Chiral base-mediated asymmetric functionalisation of tricarbonylchromium(0) complexes of benzyl sulfides

Susan E. Gibson (née Thomas),^{*,a} Peter Ham,^b Gary R. Jefferson^a and Mark H. Smith^a

^a Department of Chemistry, Imperial College of Science, Technology and Medicine, South Kensington, London, UK SW7 2AY

^b SmithKline Beecham Pharmaceuticals, Discovery Research, New Frontiers Science Park, Third Avenue, Harlow, Essex, UK CM19 5AW

Chiral base-mediated asymmetric functionalisation of tricarbonylchromium(0) complexes of benzyl sulfides gives, after crystallisation, products of high enantiomeric purity (92-99% ee) in acceptable yield (51-76%); an intriguing reversal of stereoselectivity with respect to the analogous oxygen systems is noted.

The configurational instability of α -sulfur substituted alkyllithium compounds 1^{1} and benzyllithium compounds 2^{2} is well documented and attempts to use these species in asymmetric synthesis have met with little success to date. Indeed, the first examples of enantiomerically enriched a-sulfur substituted alkyllithium compounds, whose chirality is determined solely by the stereogenic carbon centre, were prepared only very recently. Thus, generation of the α -sulfur substituted alkyllithiums 1 (R' = Me, Pr, Prⁱ; R = $CONCMe_2OCH_2CMe_2$) by deprotonation of their conjugate acids with Bu^sLi-(-)sparteine and subsequent quenching with carbon dioxide or chlorotrimethylsilane gave products in 77-95% yield and 40-60% ee.1

We recently discovered that the benzylic methylene group in tricarbonylchromium(0) complexes of alkyl benzyl ethers 3 may be asymmetrically functionalised in high yield (86-96%) and high enantiomeric excess (97-99%) by deprotonation with the chiral base 4 followed by an electrophilic quench.³ The success of this approach is partially attributed to the configurational stability of the intermediate anion to which structure 5 presumably makes a significant contribution.

In view of (i) the recognised instability of α -sulfur substituted lithium compounds, and (ii) the emerging potential of chiral sulfides as ligands in asymmetric synthesis,⁴ we were intrigued to discover whether or not the anions of tricarbonylchromium(0) complexes of alkyl/aryl benzyl sulfides 6 would be sufficiently configurationally stable to undergo bond-forming reactions and produce enantiomerically enriched products. The results of our studies are described herein.

The novel complexes $6a, b, d-f^{\dagger}$ and the known complex $6c^{5}$

were prepared from the readily accessible tricarbonylchromium(0) complex of benzyl alcohol⁶ in good yield (72-90%) by treatment with the appropriate thiol in the presence of HBF₄·OMe₂.⁵

The reactivity of complex 6a (R = Ph) was examined initially. Thus reaction of **6a** first with the chiral base **4** at -78 °C for 6 h and then with iodomethane at -78 °C for a further 2 h led to clean benzylic methylation and the isolation of the novel complex 7 ($R^{i} = Ph$; $R^{2} = Me$) in 94% yield (Table 1, entry 1). Product 7 was readily analysed by chiral HPLC ‡ and its ee was found to be a very encouraging 63%.§

In order to determine the effect of changing the sulfide substituent R¹ from an aryl group to an alkyl group, complex 6b $(R^1 = Me)$ was examined next. Reaction of this complex with the chiral base 4 for 1 h at -78 °C followed by quenching for 1 h at -78 °C with benzyl bromide, 2-(bromomethyl)naphthalene and chlorotrimethylsilane gave novel products 8-10 respectively in good yield (62–93%) and significantly increased ee (88–89%) (Table 1, entries 2–4).

The effect of increasing the steric bulk of the sulfide substituent R^1 on the enantioselectivity of the reaction was subsequently explored by reacting complexes 6c ($R^1 = Et$), 6d $(\mathbf{R}^1 = \mathbf{Pr}^i)$ and **6e** $(\mathbf{R}^1 = \mathbf{Bu}^i)$ with chiral base **4** and a range of electrophiles. The reactions of 6c ($R^1 = Et$) gave good yields (72-88%) of the known product 11⁸ and the novel products 12-13 in slightly diminished ee (78-82%) (Table 1, entries 5-7). In contrast, complexes **6d** ($R^1 = Pr^i$) and **6e** ($R^1 = Bu^t$) were relatively unreactive and gave products 14 and 15 in very poor ee (18 and 20% respectively) when quenched with iodomethane and 2-(bromomethyl)naphthalene respectively (Table 1, entries 8 and 9).

[‡] Racemic products for HPLC analysis were generated by Bu'Li deprotonation-electrophilic quench of the appropriate substrate. § In contrast, reaction of (1,3-dihydroisobenzothiophene)tricarbonylchromium(0) with a chiral amide base has been reported to give racemic products.²

[†] The novel complexes 6a,b,d-f, 7-10 and 12-17 gave satisfactory microanalytical and spectroscopic (IR, ¹H NMR, ¹³C NMR, MS) data.

Entry	Substrate	R ¹	R²X	Product	R ¹	R²	Before crystallisation		After crystallisation		
							Yield (%)	Ee (%) ^b	Yield (%)	Ee (%) ^b	[a] _D ^c
1	6a	Ph	MeI	7	Ph	Me	94 ^d	63	_	_	_
2	6b	Me	PhCH₂Br	8	Me	CH₂Ph	91	88	71	92	+114
3	6b	Me	C ₁₁ H ₉ Br	9	Me	C11H9	93	88	76	94	+161
4	6b	Me	Me ₃ SiCl	10	Me	SiMe ₃	62	89	_	_	_
5	6c	Et	PhCH₂Br	11	Et	CH ₂ Ph	75	78	65	97	+87
6	6c	Et	C₁₁H₀Br	12	Et	C ₁₁ H ₉	88	80	60	90	+120
7	6c	Et	Me ₃ SiCl	13	Et	SiMe ₃	72	82	51	99	-101
8	6d	Pr ⁱ	MeI	14	Pr ⁱ	Me	94 ^e	18	_	_	_
9	6e	Bu ^t	C₁₁H₀Br	15	Bu ^t	C ₁₁ H ₉	45 ^f	20	_	_	_
10	6f	CH₂Ph	MeI	16	CH₂Ph	Me	84	91	_	_	_
11	6f	CH ₂ Ph	C ₁₁ H ₉ Br	17	CH ₂ Ph	$C_{11}H_9$	83	91	51	98	+156

^a The experimental procedure for the conversion of **6b** to **9** (Entry 3) is typical: A solution of the chiral dilithium amide **4** was prepared by treatment of the corresponding diamine (0.185 g, 0.44 mmol) in THF (5 cm³) at -78 °C with BuLi (1.6 mol dm⁻³ in hexanes; 0.55 cm³, 0.88 mmol). The solution was allowed to warm to room temperature with stirring and then recooled to -78 °C. To the resulting pink solution was added a solution of LiCl (0.017 g, 0.40 mmol) in THF (5 cm³) via a cannula. To this was added complex 6b (0.110 g, 0.40 mmol) in THF (5 cm³) via a cannula over approximately 2 min. The yellow-orange solution was stirred at -78 °C for 1 h and then 2-(bromomethyl)naphthalene (0.265 g, 1.20 mmol) was added. The yellow solution was stirred at -78 °C for a further 1 h, MeOH (2 cm³) was added, the solution warmed to room temperature and the solvents removed in vacuo. Flash chromatography of the residue [Al₂O₃ (grade II); diethyl ether-petroleum ether (40-60 °C), 1:9] gave complex 9 as a bright yellow solid (0.154 g, 93%) of ee 88%. Recrystallisation from diethyl ether-petroleum ether (40-60 °C) gave fine yellow crystals (0.125 g, 76%) of ee 94%. ^b Ees measured by HPLC (Chiralcel OD-H); accuracy ±1%. ^c All values measured within the range 22-29 °C in CH₂Cl₂ (c1). ^d Reaction carried out at -78 °C for 6 h with base and then 2 h with electrophile. Reaction carried out at -78 °C for 6 h with base and then 2 h with electrophile—product contaminated with 9% starting material. ¹ Reaction carried out at -78 °C for 6 h with base and then 2 h with electrophile unreacted starting material was also recovered.

Although complex **6b** was emerging as the most attractive substrate for asymmetric functionalisation of benzyl sulfides, the volatility of methanethiol, used in the synthesis of **6b**, prompted a search for an alternative R¹ substituent. Thus complex **6f** ($R^1 = CH_2Ph$) was synthesised and reacted with chiral base 4. Quenching with iodomethane and 2-(bromomethyl)naphthalene gave products 16 and 17 in good yield (83-84%) and with ees essentially equivalent to those obtained when $R^1 = Me (91\%)$ (Table 1, entries 10–11).

Complexes 8, 9, 11-13 and 17 were crystallised, leading to samples of good enantiomeric purity (92-99% ee) in acceptable yield (51-76%) (Table 1, entries 2, 3, 5-7, 11). An X-ray crystallographic analysis of complex 13 (99% ee) ¶ revealed, to our surprise, that it was the opposite enantiomer to the one we had predicted based on our results obtained with the analogous ethers.^{3,9} In order to probe this change in stereochemical outcome further, the ether complex (R)-18³ (97% ee) was reacted with benzyl thiol in the presence of HBF₄·OMe₂. Work-up gave complex 16 in 65% yield and HPLC analysis of this material revealed that it was the opposite enantiomer to that obtained by the deprotonation-quench route. As acid catalysed substitutions of this type are known to proceed with retention of configuration,¹⁰ this result is stereochemically consistent with the X-ray crystallographic analysis of 13. It thus appears that deprotonation of tricarbonylchromium(0) complexes of benzyl sulfides with the chiral base 4 proceeds in the opposite stereochemical sense to deprotonation of the corresponding ethers. An investigation into the origin of this intriguing stereochemical reversal is currently underway.

Acknowledgements

G. R. J. and M. H. S. gratefully acknowledge CASE awards from SmithKline Beecham Pharmaceuticals and The Associated Octel Company Limited respectively.

References

- 1 B. Kaiser and D. Hoppe, Angew. Chem., Int. Ed. Engl., 1995, 34, 323 and references therein.
- 2 H. Ahlbrecht, J. Harbach, R. W. Hoffmann and T. Ruhland, Liebigs Ann., 1995, 211 and references therein.
- 3 E. L. M. Cowton, S. E. Gibson (née Thomas), M. J. Schneider and M. H. Smith, Chem. Commun., 1996, 839.
- 4 See, for example, G. A. Cran, C. L. Gibson, S. Handa and A. R. Kennedy, Tetrahedron: Asymmetry, 1996, 7, 2511.
- 5 J. Blagg, S. G. Davies, N. J. Holman, C. A. Laughton and B. E. Mobbs, J. Chem. Soc., Perkin Trans. 1, 1986, 1581.
 6 B. Nicholls and M. C. Whiting, J. Chem. Soc., 1959, 551.
- 7 R. A. Ewin and N. S. Simpkins, Synlett, 1996, 317.
- 8 M. F. Semmelhack, W. Seufert and L. Keller, J. Am. Chem. Soc., 1980, 102, 6584.
- 9 S. E. Gibson (née Thomas), P. C. V. Potter and M. H. Smith, Chem. Commun., 1996, 2757.
- 10 S. G. Davies and T. D. McCarthy, in *Comprehensive Organometallic Chemistry II*, ed. E. W. Abel, F. G. A. Stone and G. Wilkinson, Pergamon, Oxford, 1995, vol. 12, pp. 1049-51.

Paper 7/04252C Received 13th June 1997 Accepted 17th June 1997

[¶] Details of this analysis will be published in the full account of this study.